Solving weighted norm inequalities using the Rubio de Francia algorithm
نویسندگان
چکیده
منابع مشابه
Dedicated to the Memory of Jose Luis Rubio De Francia
In this paperwe prove that the /~.,-cube can be (1 + s)-embedded into any 1 -subsyntmetrie C(s>n.dimensional normed space. Marcus and Pisier in [5]iniciated tite study of tite geometry ob finite metric spaces. Bourgain, Milman and Wolbson introduced a new notion of metnc type and developed tite non-linear titeory of Banacit spaces (see [2]and [7]). AII titese themes have been studied more inten...
متن کاملWeighted Weak-type (1, 1) Estimates via Rubio De Francia Extrapolation
The classical Rubio de Francia extrapolation result asserts that if an operator T : L0(u) → Lp0,∞(u) is bounded for some p0 > 1 and every u ∈ Ap0 , then, for every 1 < p < ∞ and every u ∈ Ap, T : L(u) → Lp,∞(u) is bounded. However, there are examples showing that it is not possible to extrapolate to the end-point p = 1. In this paper we shall prove that there exists a class of weights, slightly...
متن کاملProof of a conjecture of José L . Rubio de Francia
Given a compact connected abelian group G, its dual group Γ can be ordered (in a non-canonical way) so that it becomes an ordered group. It is known that, for any such ordering on Γ and p in the range 1 < p < ∞, the characteristic function χI of an interval I in Γ is a p−multiplier with a uniform bound (independent of I) on the corresponding operator SI on Lp(G). In this note it is shown that, ...
متن کاملWeighted Norm Inequalities
Introduction In the rst part of the paper we study integral operators of the form (1) Kf(x) = v(x) x Z 0 k(x; y)u(y)f(y) dy; x > 0; where the real weight functions v(t) and u(t) are locally integrable and the kernel k(x; y) 0 satisses the following condition: there exists a constant D 1 such that Standard examples of a kernel k(x; y) 0 satisfying (2) are (i) k(x; y) = (x ? y) , 0 (ii) k(x; y) =...
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 1987
ISSN: 0002-9939
DOI: 10.1090/s0002-9939-1987-0902547-1